

Intel® MPI Library for Linux* OS

User’s Guide

2

Contents
Legal Information ... 4

1. Introduction.. 6

1.1. Introducing Intel® MPI Library ... 6

1.2. Intended Audience .. 7
1.3. Conventions and Symbols.. 7

1.4. Related Information .. 7

2. Usage Model... 9

3. Installation and Licensing ..10

3.1. Installing Intel® MPI Library ..10

3.2. Licensing for Intel® MPI Library Runtime Environment and Software Development Kit 10

4. Compiling and Linking...11

4.1. Compiling an MPI Program ..11

4.2. Adding Debug Symbols ...11

4.3. Other Compilers Support ...11

5. Running Applications ...13

5.1. Running an MPI Program ..13

5.2. Intel® MPI Library Configurations...13
5.3. Multi-threaded Applications..14

5.4. Selecting Fabrics ..14

5.4.1. TCP Socket Connection ...14
5.4.2. Shared Memory ..14
5.4.3. Shared Memory and DAPL* Connection ..14
5.4.4. Shared memory and TMI* ...15
5.4.5. Shared memory and OFA* ..15
5.4.6. Shared memory and OFI* ..15
5.4.7. Multi-rail capability..15
5.4.8. I_MPI_FABRICS..16

6. Debugging and Testing ...18

6.1. GDB*: The GNU* Project Debugger ...18

6.2. TotalView* Debugger ...18

6.3. DDT* Debugger ...19
6.4. Logging ..19

6.4.1. Getting Debug Information ...19
6.4.2. Tracing an Application ...19
6.4.3. Checking Correctness ...19
6.4.4. Gathering Statistics..20

6.5. Testing the Installation ..20

6.5.1. Compiling and Running a Test Program ..20

7. Process Management ...22

7.1. Selecting a Process Manager ...22

7.2. Scalable Process Management System (Hydra) ...22
7.3. Multipurpose Daemon* (MPD*)...22

7.4. Controlling MPI Process Placement..22

8. Tuning with mpitune Utility ..24

8.1. Cluster-Specific Tuning ...24

Intel® MPI Library User's Guide for Linux* OS

3

8.2. Application-Specific Tuning...24

8.3. Setting Time Limit ...25

8.4. Setting a Fabrics List ...25
8.5. Setting a Range for the Number of Processes ..25

8.6. Setting a Limitation for Hosts Usage ..25

8.7. Restoring mpitune from the Last Saved Session ...25
8.8. Tuning Applications Manually...25

9. Job Schedulers Support ...26

9.1. Altair* PBS Pro*, TORQUE*, and OpenPBS* ...26
9.2. IBM* Platform LSF*..26

9.3. Parallelnavi NQS*...26

9.4. SLURM*..27
9.5. Univa* Grid Engine*...27

9.6. SIGINT, SIGTERM Signals Intercepting ...27

10. General Cluster Considerations ..28

10.1. Defining which Nodes to Use ..28

10.2. Password-less ssh Connection ..28

10.3. Heterogeneous Systems and Jobs ...29

11. Troubleshooting ..30

11.1. General Troubleshooting Procedures ...30

11.2. Examples of MPI Failures ...30
11.2.1. Communication Problems ...30
11.2.2. Environment Problems ...33
11.2.3. Other Problems..35

12. Using the Intel® MPI Library with the Intel® Many Integrated Core (Intel® MIC) Architecture37

12.1. Libraries ..37

12.2. Multiple Cards ..37

12.3. Using Intel® MPI Library on Intel® Xeon Phi™ Coprocessor ..37
12.3.1. Building an MPI Application...37
12.3.2. Running an MPI Application ..38

Legal Information

4

Legal Information
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by

this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising

from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All

information provided here is subject to change without notice. Contact your Intel representative to obtain

the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from

published specifications.

MPEG-1, MPEG-2, MPEG-4, H.261, H.263, H.264, MP3, DV, VC-1, MJPEG, AC3, AAC, G.711, G.722, G.722.1,

G.722.2, AMRWB, Extended AMRWB (AMRWB+), G.167, G.168, G.169, G.723.1, G.726, G.728, G.729,

G.729.1, GSM AMR, GSM FR are international standards promoted by ISO, IEC, ITU, ETSI, 3GPP and other

organizations. Implementations of these standards, or the standard enabled platforms may require

licenses from various entities, including Intel Corporation.

Software and workloads used in performance tests may have been optimized for performance only on

Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific

computer systems, components, software, operations and functions. Any change to any of those factors

may cause the results to vary. You should consult other information and performance tests to assist you in

fully evaluating your contemplated purchases, including the performance of that product when combined

with other products.

Intel, the Intel logo, BlueMoon, BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Cilk, Core

Inside, E-GOLD, Flexpipe, i960, Intel, the Intel logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel Core,

Intel Inside, Intel Insider, the Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel

SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the Intel Sponsors of Tomorrow. logo, Intel

StrataFlash, Intel vPro, Intel XScale, Intel True Scale Fabric, InTru, the InTru logo, the InTru Inside logo,

InTru soundmark, Itanium, Itanium Inside, MCS, MMX, MPSS, Moblin, Pentium, Pentium Inside, Puma,

skoool, the skoool logo, SMARTi, Sound Mark, Stay With It, The Creators Project, The Journey Inside,

Thunderbolt, Ultrabook, vPro Inside, VTune, Xeon, Xeon Phi, Xeon Inside, X-GOLD, XMM, X-PMU and

XPOSYS are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft

Corporation in the United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Bluetooth is a trademark owned by its proprietor and used by Intel Corporation under license.

Intel Corporation uses the Palm OS* Ready mark under license from Palm, Inc.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

© 2015 Intel Corporation. Portions (PBS Library) are copyrighted by Altair Engineering, Inc. and used with

permission. All rights reserved.

5

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and

SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or

effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-

dependent optimizations in this product are intended for use with Intel microprocessors. Certain

optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to

the applicable product User and Reference Guides for more information regarding the specific instruction

sets covered by this notice.

Notice revision #20110804

6

1. Introduction
The Intel® MPI Library for Linux* OS User Guide explains how to use the Intel® MPI Library in some common

usage scenarios. It provides information regarding compiling, linking, running, and debugging MPI

applications, as well as information on integration within a cluster environment.

This User's Guide contains the following sections

Document Organization

Section Description

Section 1. Introduction Introduces this document

Section 2. Usage Model Presents the usage model for working with the Intel® MPI

Library

Section 3. Installation and Licensing Describes the installation process and provides information

about licensing

Section 4. Compiling and Linking Gives instructions about how to compile and link MPI

applications

Section 5. Running Applications Describes the steps for running an application

Section 6. Debugging and Testing Explains how to start an application under a debugger

Section 7. Process Management Gives information about process managers and how to set up

password-less ssh connections

Section 8. Tuning with mpitune Utility Describes how to use the mpitune utility to find optimal

settings for the Intel® MPI Library.

Section 9. Job Schedulers Support Describes integration with job schedulers

Section 10. General Cluster

Considerations

Discusses general considerations for clusters related to MPI

usage

Section 11. Troubleshooting Provides general troubleshooting steps and examples

Section 12. Using the Intel® MPI Library

with the Intel® Many Integrated Core

(Intel® MIC) Architecture

Describes some special considerations when using the Intel®

MPI Library with the Intel® MIC architecture

1.1. Introducing Intel® MPI Library
The Intel® MPI Library is a multi-fabric message passing library that implements the Message Passing

Interface, version 3.0 (MPI-3.0) specification. It provides a standard library across Intel® platforms that:

Intel® MPI Library User's Guide for Linux* OS

7

 Delivers best in class performance for enterprise, divisional, departmental and workgroup high

performance computing. The Intel® MPI Library focuses on improving application performance on

Intel® architecture based clusters.

 Enables you to adopt MPI-3.0 functions as your needs dictate

The product comprises the following main components:

 Runtime Environment (RTO) includes the tools you need to run programs, including scalable

process management system (Hydra*), Multipurpose Daemon* (MPD), supporting utilities, shared

(.so) libraries, and documentation.

 Software Development Kit (SDK) includes all of the Runtime Environment components plus

compilation tools, including compiler drivers such as mpiicc, include files and modules, static (.a)

libraries, debug libraries, and test codes.

1.2. Intended Audience
This User's Guide helps an experienced user to start using the Intel® MPI Library and contains brief

descriptions of the main functionality as a set of how-to instructions and examples. For full information,

see Intel® MPI Library Reference Manual for Linux* OS.

1.3. Conventions and Symbols
The following conventions are used in this document.

Table 1.3-1 Conventions and Symbols used in this Document

This type style Document or product names

This type style Commands, arguments, options, file names

THIS_TYPE_STYLE Environment variables

<this type style> Placeholders for actual values

[items] Optional items

{ item | item } Selectable items separated by vertical bar(s)

(SDK only) For Software Development Kit (SDK) users only

1.4. Related Information
To get more information about the Intel® MPI Library, explore the following resources:

 Intel® MPI Library Release Notes for updated information on requirements, technical support, and

known limitations.

 Intel® MPI Library Reference Manual for in-depth knowledge of the product features, commands,

options, and environment variables.

Introduction

8

 Intel® MPI Library for Linux* OS Knowledge Base for additional troubleshooting tips and tricks,

compatibility notes, known issues, and technical notes.

For additional resources, see:

Intel® MPI Library Product Web Site

Intel Product Support

Intel® Cluster Tools Products Website

Intel® Software Development Products Website

http://software.intel.com/en-us/articles/intel-mpi-library-for-linux-kb/all/1/
http://www.intel.com/go/mpi
http://www.intel.com/software/products/support/mpi
http://software.intel.com/en-us/articles/intel-cluster-studio-xe/
http://www.intel.com/software/products

9

2. Usage Model
Using the Intel® MPI Library involves the following steps:

Figure 1: Flowchart representing the usage model for working with the Intel® MPI Library.

10

3. Installation and Licensing
This section describes the installation process and provides information about licensing for Intel® MPI

Library Runtime Environment (RTO) and Software Development Kit (SDK).

3.1. Installing Intel® MPI Library
If you have a previous version of the Intel® MPI Library for Linux* OS installed, you do not need to uninstall

it before installing the latest version.

Extract the l_mpi[-rt]_p_<version>.<package_num>.tar.gz package by using following

command:

tar –xvzf l_mpi[-rt]_p_<version>.<package_num>.tar.gz

This command creates the subdirectory l_mpi[-rt]_p_<version>.<package_num>.

To start installation, run install.sh. The default installation path for the Intel® MPI Library is

/opt/intel/compilers_and_libraries_2016.<update>.<package#>/linux/mpi .

There are 2 different installations:

 RPM-based installation- this installation requires root password. The product can be installed

either on a shared file system or on each node of your cluster.

 Non-RPM installation- this installation does not require root access and it installs all scripts,

libraries, and files in the desired directory (usually $HOME for the user).

Scripts, include files, and libraries for different architectures are located in different directories. By default,

you can find binary files and all needed scripts under <installdir>/<arch> directory. For example, for

Intel®64 architecture, <arch> is bin64.

NOTE

To use the full functionality of the library on Intel®64 architecture, set the environment from the

<installdir>/bin64 directory. You can use the provided script files to simplify setting the environment

variables. Source the file <installdir>/bin[64]/mpivars.[c]sh to set appropriate values for your

desired development environment.

For more information on installation, see Intel® MPI Library for Linux* OS Installation Guide. You can also

find information about how to install the product in silent mode and some useful installer options.

3.2. Licensing for Intel® MPI Library Runtime
Environment and Software Development Kit
There are two different licensing options:

 Intel® MPI Library Runtime Environment (RTO) license. The license covers everything you need to

run Intel® MPI Library-based applications and is free and permanent.

 Intel® MPI Library Software Development Kit (SDK) license. This license covers all of Runtime

Environment components as well as the compilation tools: compiler drivers (mpiicc, mpicc, and

so on), files and modules, static (.a) libraries, debug libraries, trace libraries, and test sources. This

license is fee-based, with several options described in the product end-user license agreement

(EULA).

Intel® MPI Library User's Guide for Linux* OS

11

4. Compiling and Linking
This section gives instructions about how to compile and link different kinds of your Intel® MPI Library

applications, and details on different debugging and compiler support options. The following topics are

included in this section:

 Compiling an MPI program

 Adding debug symbols

 Other compilers support

4.1. Compiling an MPI Program
This topic describes the basic steps required to compile and link an MPI program, when using only the

Intel® MPI Library Development Kit. To compile and link an MPI program with the Intel® MPI Library:

1. Source the appropriate mpivars.[c]sh script to get the proper environment settings (using

Bash* shell):

$. <installdir>/bin64/mpivars.sh

2. Compile your MPI program using the appropriate mpixxx compiler command. For example, to

compile a program written in C, use the mpiicc command as follows:

$ mpiicc <installdir>/test/test.c -o testc

You’ll get an executable file testc in the current directory which can be started immediately. For

description of how to launch your application, see Running Applications in this document.

NOTE

By default, the executable file testc is linked with the multi-threaded optimized Intel MPI Library. If you

need to use other configuration, see Intel® MPI Library Configurations.

Other supported compilers have an equivalent command that uses the prefix mpi on the standard

compiler command. For the full list of supported compilers, see the Compiler Commands topic in Intel®

MPI Library Reference Manual for Linux* OS.

4.2. Adding Debug Symbols
If you need to debug your application, add the -g option. In this case debug information is added to the

binary. You can use any debugger to debug the application.

$ mpiicc -g test.c -o testc

4.3. Other Compilers Support
Intel® MPI Library provides binding libraries to support different operating systems (different glibc*

versions) and different compilers. These libraries provide C++, F77, F90 interfaces.

GNU* and Intel® Compilers binding libraries:

 libmpicxx.{a|so} – for g++ >= 3.4;

 libmpifort.{a|so} – for g77/gfortran interface for GNU* and Intel® Compilers;

Compiling and Linking

12

Your application will be linked against correct GNU* and Intel® Compilers binding libraries if you are using

mpicc, mpicxx, mpifc, mpif77, mpif90, mpigcc, mpigxx, mpiicc, mpiicpc or mpiifort compiler

commands.

For third-party compilers, there is a binding kit which allows you to add support for a certain compiler to

the Intel® MPI Library for Linux* OS.

NOTE

The Intel® MPI Library supports Intel® compilers as well as GNU* compilers out of the box. See the Intel®

MPI Library Release Notes for more details.

The Intel® MPI Library supports PGI* C, PGI* Fortran 77, Absoft* Fortran 77 compilers out of the box, with

the following caveats:

 Your PGI* compiled source files must not transfer long double entities

 Your Absoft* based build procedure must use the -g77, -B108 compiler options

 Install and select the right compilers

 Ensure that the respective compiler runtime is installed on all nodes

You have to build extra Intel® MPI Library binding libraries if you need the support for PGI* C++, PGI*

Fortran 95, Absoft* Fortran 95 and GNU* Fortran 95 higher than version 4.0 bindings.

This binding kit provides all the necessary source files, convenience scripts, and instructions you need.

The binding kit and detailed description are located in binding directory. To get access to the binding,

submit a request to the Intel® MPI Library for Linux* OS product at the Intel® Premier Support site.

13

5. Running Applications
After you have compiled and linked your application, you are ready to run your MPI applications. This topic

describes the steps for running applications.

5.1. Running an MPI Program
The easiest way to run an MPI program is using the mpirun command:

 $ mpirun -n <# of processes> ./myprog

This command invokes the mpiexec.hydra command which uses the Hydra Process Manager by default.

Use the mpiexec.hydra options on the mpirun command line.

NOTE

The commands mpirun and mpiexec.hydra are interchangeable. You are recommended to use the

mpirun command to run Intel MPI programs for the following reasons:

1. You can specify all mpiexec.hydra options with the mpirun command.

2. The mpirun command detects if the MPI job is submitted from within a session allocated using a

job scheduler like PBS Pro* or LSF*. Thus, you are recommended to use the mpirun command

when an Intel MPI program is running under batch schedulers or job managers.

Use the -n option to set the number of MPI processes. If the -n option is not specified, the process

manager pulls the host list from a job scheduler, or uses the number of cores on the machine.

By default, the ssh protocol is used for communication between nodes. If you are using rsh instead, use -r

rsh option:

 $ mpirun -r rsh -n <# of processes> ./myprog

For a successful run, configure password-less ssh connections for all nodes. For more details, see the Job

Startup Commands topic in Intel® MPI Library Reference Manual for Linux* OS .

After you successfully run your application using the Intel® MPI Library, you can move your application

from one cluster to another and use different fabrics between the nodes without re-linking. If you

encounter problems, see Debugging and Testing for possible solutions.

5.2. Intel® MPI Library Configurations
To configure your Intel® MPI Library, source the script mpivars.[c]sh with appropriate arguments. For

example:

$. <installdir>/bin64/mpivars.sh release

You can use the following arguments in this command. The multi-threaded optimized Intel® MPI Library is

used by default.

Argument Definition

release Set this argument to use single-threaded optimized Intel® MPI Library.

debug Set this argument to use single-threaded debug Intel® MPI Library.

release_mt Set this argument to use multi-threaded optimized Intel® MPI Library.

Running Applications

14

debug_mt Set this argument to use multi-threaded debug Intel® MPI Library.

NOTE

If you want to use different configuration of Intel® MPI Library, run the mpivars.[c]sh script with

appropriate arguments before an application launch. You do not need to recompile applications.

5.3. Multi-threaded Applications
To run OpenMP* application and pin threads inside the domain, make sure the KMP_AFFINITY

environment variable is set to use the corresponding OpenMP* feature.

Run the application:

 $ mpirun –genv OMP_NUM_THREADS 4 -n <# of processes> ./myprog

For more details see the Interoperability with OpenMP* topic in the Intel® MPI Library Reference Manual for

Linux* OS.

5.4. Selecting Fabrics
By default, the Intel® MPI Library selects a network fabric based on the list of fabrics specified in

I_MPI_FABRICS_LIST. To select a specific network fabric combination, use the -genv option to assign a

value to the I_MPI_FABRICS variable. You can also assign a value using the export command.

If the specified fabric is not available, Intel® MPI Library will go down the list specified in

I_MPI_FABRICS_LIST and select the next available fabric.

You can disable this fallback behavior by using the I_MPI_FALLBACK variable:

 $ export I_MPI_FALLBACK=0

By default, the fallback is enabled. If I_MPI_FABRICS is set, the fallback will be disabled.

5.4.1. TCP Socket Connection
Use the following command to run an MPI program over TCP sockets using the available Ethernet

connection on the cluster. The program does not use shared memory within a node:

 $ mpirun -genv I_MPI_FABRICS tcp -n <# of processes> ./myprog

5.4.2. Shared Memory
Use the following command to run an MPI program over the shared-memory fabric (shm) only:

 $ mpirun -genv I_MPI_FABRICS shm -n <# of processes> ./myprog

5.4.3. Shared Memory and DAPL* Connection
To use shared memory for intra-node communication and the Direct Access Programming Library* (DAPL*)

layer for inter-node communication, use the following command:

$ mpirun -genv I_MPI_FABRICS shm:dapl -n <# of processes> ./myprog

Use the I_MPI_DAPL_UD environment variable to enable connectionless DAPL User Datagrams* (DAPL

UD*):

 $ export I_MPI_DAPL_UD=enable

 $ mpirun -genv I_MPI_FABRICS shm:dapl -n <# of processes> ./myprog

This is the default method if no fabric options are selected.

Intel® MPI Library User's Guide for Linux* OS

15

5.4.4. Shared memory and TMI*
To use shared memory for intra-node communication and the Tag Matching Interface* (TMI*) for inter-

node communication, use the following command (make sure that you have libtmi.so library in the search

path of the ldd command):

 $ mpirun -genv I_MPI_FABRICS shm:tmi -n <# of processes> ./myprog

This is the recommended method if using Intel® Omni Scale Fabric (formerly Intel® True Scale) or the

Myricom* MX interface.

5.4.5. Shared memory and OFA*
To select shared memory for intra-node communication and OpenFabrics* Enterprise Distribution (OFED)

verbs for inter-node communication, use the following command:

 $ mpirun -genv I_MPI_FABRICS shm:ofa -n <# of processes> ./myprog

This is the recommended method if using the Open Fabrics* Enterprise Distribution (OFED*) software

stack.

5.4.6. Shared memory and OFI*
To select shared memory for intra-node communication and OpenFabrics Interface* (OFI*) for inter-node

communication, use the following command:

 $ mpirun -genv I_MPI_FABRICS shm:ofi -n <# of processes> ./myprog

This is the recommended method if using the OpenFabrics Interface* (OFI*) software stack.

5.4.7. Multi-rail capability
If your cluster is equipped with several connection cards or multi-port cards, you can improve bandwidth

of communications using the following settings:

 $ export I_MPI_FABRICS=shm:ofa

 $ export I_MPI_OFA_NUM_ADAPTERS=<num>

Where <num> is the number of connection adapters (1 by default).

If connection cards have several ports, you can specify the number of ports using the following setting:

 $ export I_MPI_OFA_NUM_PORTS=<num>

For more details see the Fabrics Control topic in Intel® MPI Library Reference Manual for Linux* OS.

After you successfully run your application using the Intel MPI Library over any of the fabrics described,

you can move your application from one cluster to another and use different fabrics between the nodes

without re-linking. If you encounter problems, see Debugging and Testing for possible solutions.

Additionally, using mpirun is the recommended practice when using a resource manager, such as PBS

Pro* or LSF*.

For example, to run the application in the PBS environment, follow these steps:

1. Create a PBS launch script that specifies number of nodes requested and sets your Intel MPI

Library environment. For example, create a pbs_run.sh file with the following content:

#PBS -l nodes=2:ppn=1

#PBS -l walltime=1:30:00

#PBS -q workq

#PBS -V

Set Intel MPI environment

mpi_dir=<installdir>/<arch>/bin

Running Applications

16

cd $PBS_O_WORKDIR

source $mpi_dir/mpivars.sh

Launch application

mpirun -n <# of processes> ./myprog

2. Submit the job using the PBS qsub command:

$ qsub pbs_run.sh

When using mpirun under a job scheduler, you do not need to determine the number of available nodes.

Intel MPI Library automatically detects the available nodes through the Hydra process manager.

5.4.8. I_MPI_FABRICS
This topic is an excerpt from the Intel® MPI Library Reference Manual for Linux* OS which provides further

details on the I_MPI_FABRICS environment variable.

Select a particular network fabric to be used for communication.

Syntax

I_MPI_FABRICS=<fabric>|<intra-node fabric>:<inter-nodes fabric>

Where

 <fabric> := {shm, dapl, tcp, tmi, ofa, ofi}

 <intra-node fabric> := {shm, dapl, tcp, tmi, ofa, ofi}

 <inter-nodes fabric> := {dapl, tcp, tmi, ofa, ofi}

Arguments

Argument Definition

<fabric> Define a network fabric

shm Shared-memory

dapl DAPL-capable network fabrics, such as InfiniBand*, iWarp*, Dolphin*,

and XPMEM* (through DAPL*)

tcp TCP/IP-capable network fabrics, such as Ethernet and InfiniBand*

(through IPoIB*)

tmi Network fabrics with tag matching capabilities through the Tag

Matching Interface (TMI), such as Intel® True Scale Fabric and Myrinet*

ofa Network fabric, such as InfiniBand* (through OpenFabrics* Enterprise

Distribution (OFED*) verbs) provided by the Open Fabrics Alliance*

(OFA*)

ofi OFI (OpenFabrics Interfaces*)-capable network fabric including Intel®

True Scale Fabric, and TCP (through OFI* API)

For example, to select the winOFED* InfiniBand* device, use the following command:

$ mpirun -n <# of processes> \ -env I_MPI_FABRICS shm:dapl <executable>

Intel® MPI Library User's Guide for Linux* OS

17

For these devices, if <provider> is not specified, the first DAPL* provider in the /etc/dat.conf file is

used. The shm fabric is available for both Intel® and non-Intel microprocessors, but it may perform

additional optimizations for Intel microprocessors than for non-Intel microprocessors.

NOTE

Ensure the selected fabric is available. For example, use shm only if all the processes can communicate

with each other through the availability of the /dev/shm device. Use dapl only when all processes can

communicate with each other through a single DAPL provider.

18

6. Debugging and Testing
This topic explains how to debug MPI applications with different debugger tools.

6.1. GDB*: The GNU* Project Debugger
Use the following command to launch the GDB* debugger with Intel® MPI Library:

$ mpirun -gdb -n 4 ./testc

You can work with the GDB debugger as you usually do with a single-process application. For details about

how to work with parallel programs, see the GDB documentation at http://www.gnu.org/software/gdb/.

You can also attach to a running job with

$ mpirun –n 4 -gdba <pid>

Where <pid> is the process ID for the running MPI rank.

6.2. TotalView* Debugger
Intel® MPI Library supports the use of the TotalView* debugger from Rogue Wave* Software, Inc. To debug

an MPI program, add -tv to the global mpirun arguments, as in

$ mpirun -tv -n 4 ./testc

NOTE

In case of ssh communication, you need to set the TVDSVRLAUNCHCMD environment variable to ssh.

You will get a popup window from TotalView asking whether you want to start the job in a stopped state. If

so, when the TotalView window appears, you may see assembly code in the source window. Click on

main() in the stack window (upper left) to see the source of the main function. TotalView shows that the

program (all processes) are stopped in the call to MPI_Init(). When debugging with TotalView using the

above startup sequence, you need to exit TotalView before restarting an Intel MPI Library job.

To debug with TotalView an enable restarting the session, use the following command line:

$ totalview python -a ‘which mpirun‘ -tvsu <mpirun_args> <prog> <prog_args>

If you have TotalView 8.1.0 or later, you can use a feature called indirect launch.

1. Invoke TotalView as:

$ totalview <prog> -a <prog_args>

2. Select the Process/Startup Parameters command.

3. Choose the Parallel tab in the resulting dialog box and choose MPICH2 as the parallel system.

4. Set the number of tasks using the Tasks field.

5. Enter other needed mpirun arguments into the Additional Starter Arguments field.

If you want to be able to attach to a running MPI job using TotalView, you must use the -tvsu option in

the mpirun command when starting the job. Using this option adds a barrier inside MPI_Init() and

hence may affect startup performance slightly. After all tasks have returned from MPI_Init(), there is

no performance degradation incurred from this option.

Intel® MPI Library User's Guide for Linux* OS

19

6.3. DDT* Debugger
You can debug MPI applications using DDT* debugger. Intel does not provide support for this debugger.

You should obtain the support from Allinea*. According to the DDT User Guide at

http://www.allinea.com/products/ddt-support/, you can use the –tv option to run DDT with certain

TotalView* variables set beforehand.

$ export TOTALVIEW=DDT_INSTALLATION_PATH/bin/ddt-debugger-mps

$ mpirun -np 4 -tv ./your_app

If you have problems with the DDT debugger, see DDT documentation for help.

6.4. Logging
Sometimes debugging an application is not effective and you prefer to use logging instead. There are

several ways to get logging information from running applications.

6.4.1. Getting Debug Information
Environment variable I_MPI_DEBUG provides a very convenient way to get information from an MPI

application at runtime. You can set value of this variable from 0 (the default value) to 1000. The higher the

value, the more debug information you get.

$ mpirun -genv I_MPI_DEBUG 5 -n 8 ./my_application

NOTE

High values of I_MPI_DEBUG can output a lot of information and significantly reduce performance of an

application. A value of I_MPI_DEBUG=5 is generally a good starting point, which provides sufficient

information to find common errors. See the I_MPI_DEBUG description in Intel® MPI Library Reference

Manual for Linux* OS for more details.

6.4.2. Tracing an Application
Use the -t or -trace option to link the resulting executable files against the Intel® Trace Collector library.

This has the same effect as when -profile=vt is used as an argument to mpiicc or another compiler

script.

$ mpiicc -trace test.c -o testc

To use this option, you need to:

 Install the Intel® Trace Analyzer and Collector first. The tool is dist ributed as part of the Intel®

Parallel Studio XE Cluster Edition bundle only.

 Include the installation path of the Intel® Trace Collector in the VT_ROOT environment variable. Set

I_MPI_TRACE_PROFILE to the <profile_name> environment variable to specify another

profiling library. For example, set I_MPI_TRACE_PROFILE to vtfs to link against the fail-safe

version of the Intel® Trace Collector.

6.4.3. Checking Correctness
Use -check_mpi option to link the resulting executable file against the Intel® Trace Collector correctness

checking library. This has the same effect as when -profile=vtmc is used as an argument to mpiicc or

another compiler script.

$ mpiicc -profile=vtmc test.c -o testc

Or

$ mpiicc -check_mpi test.c -o testc

Debugging and Testing

20

To use this option, you need to:

 Install the Intel® Trace Analyzer and Collector first. The tool is distributed as part of the Intel®

Parallel Studio XE Cluster Edition bundle only.

 Include the installation path of the Intel® Trace Collector in the VT_ROOT environment variable. Set

I_MPI_CHECK_PROFILE to the <profile_name> environment variable to specify another

checking library.

For more information on the Intel® Trace Analyzer and Collector, see the documentation provided with this

product.

6.4.4. Gathering Statistics
If you want to collect statistics on MPI functions used in your application, you can set the I_MPI_STATS

environment variable to a number, between 1 to 10. This environment variable controls the amount of

statistics information collected and the output to the log file. By default, no statistics are gathered.

For details, see Statistics Gathering Mode in Intel® MPI Library Reference Manual for Linux* OS.

6.5. Testing the Installation
To ensure that the Intel® MPI Library is installed and functioning correctly, complete the general testing

below, in addition to compiling and running a test program.

To test the installation (on each node of your cluster):

1. Verify that <installdir>/<arch>/bin is in your PATH:

$ ssh <nodename> which mpirun

You should see the correct path for each node you test.

(SDK only) If you use the Intel® Composer XE packages, verify that the appropriate directories are

included in the PATH and LD_LIBRARY_PATH environment variables

$ mpirun -n <# of processes> env | grep PATH

You should see the correct directories for these path variables for each node you test. If not, call

the appropriate compilervars.[c]sh script. For example, for the Intel® Composer XE 2015 use

the following source command:

$. /opt/intel/composer_xe_2015/bin/compilervars.sh intel64

2. In some unusual circumstances, you need to include the <installdir>/<arch>/lib directory

in your LD_LIBRARY_PATH. To verify your LD_LIBRARY_PATH settings, use the command:

$ mpirun -n <# of processes> env | grep LD_LIBRARY_PATH

6.5.1. Compiling and Running a Test Program
To compile and run a test program, do the following:

1. (SDK only) Compile one of the test programs included with the product release as follows:

$ cd /opt/intel/samples_2016/en/mpi

$ mpiicc -o myprog test.c

2. If you are using InfiniBand*, Myrinet*, or other RDMA-capable network hardware and software,

verify that everything is functioning correctly using the testing facilities of the respective network.

3. Run the test program with all available configurations on your cluster.

Intel® MPI Library User's Guide for Linux* OS

21

 Test the TCP/IP-capable network fabric using:

$ mpirun -n 2 -genv I_MPI_DEBUG 2 -genv I_MPI_FABRICS tcp ./myprog

You should see one line of output for each rank, as well as debug output indicating the TCP/IP-

capable network fabric is used.

 Test the shared-memory and DAPL-capable network fabrics using:

$ mpirun -n 2 -genv I_MPI_DEBUG 2 -genv I_MPI_FABRICS shm:dapl ./myprog

You should see one line of output for each rank, as well as debug output indicating the shared -

memory and DAPL-capable network fabrics are being used.

 Test any other fabric using:

$ mpirun -n 2 -genv I_MPI_DEBUG 2 -genv I_MPI_FABRICS <fabric> ./myprog

where <fabric> is a supported fabric. For more information, see Selecting Fabrics.

For each of the mpirun commands used, you should see one line of output for each rank, as well as debug

output indicating which fabric was used. The fabric(s) should agree with the I_MPI_FABRICS setting.

The /opt/intel/samples_2016/en/mpi directory in the Intel® MPI Library Development Kit contains

other test programs in addition to test.c

22

7. Process Management
This topic describes the process managers included with the Intel® MPI Library:

 Selecting a process manager

 Scalable process management system (Hydra)

 Multipurpose Daemon* (MPD*)

 Controlling MPI process placement

7.1. Selecting a Process Manager
The mpirun script uses the process manager specified by the I_MPI_PROCESS_MANAGER variable. By

default, mpirun selects the Hydra Process Manager. Setting I_MPI_PROCESS_MANAGER to hydra will

explicitly select Hydra, and setting it to mpd will explicitly select MPD. The process manager can also be

selected by directly calling the appropriate mpiexec file: mpiexec.hydra for Hydra or mpiexec for MPD.

7.2. Scalable Process Management System (Hydra)
Hydra is a simplified, scalable process manager. Hydra will check for known resource managers to

determine where the processes may be run and to distribute the processes among the targets using

proxies on each host. These proxies will be used for process launching, cleanup, I/O forwarding, signal

forwarding, and other tasks.

You can start Hydra by using mpiexec.hydra. See Scalable Process Management System (Hydra)

Commands topic for a detailed list of options in the Intel® MPI Library Reference Manual .

NOTE

Multipurpose daemon* (MPD) has been deprecated starting from Intel® MPI Library 5.0 release. To start

parallel jobs, use the scalable process management system (Hydra).

7.3. Multipurpose Daemon* (MPD*)
MPD stands for Multipurpose Daemon. This is the Intel® MPI Library process management system for

starting parallel jobs, which have to run on all nodes. MPDs gather information about t he system and

hardware, as well as communicate with each other to exchange required information. For example, an MPD

ring is required for correct pinning under the MPD process manager.

NOTE

Multipurpose daemon* (MPD) has been deprecated starting with Intel® MPI Library 5.0 release. Convert to

using the scalable process management system (Hydra) instead to start parallel jobs.

7.4. Controlling MPI Process Placement
The mpirun command controls how the ranks of the processes are allocated to the nodes of the cluster.

By default, the mpirun command uses group round-robin assignment, putting consecutive MPI process on

all processor ranks of a node. This placement algorithm may not be the best choice for your application,

particularly for clusters with symmetric multi-processor (SMP) nodes.

Intel® MPI Library User's Guide for Linux* OS

23

Suppose that the geometry is <#ranks> = 4 and <#nodes> = 2, where adjacent pairs of ranks are

assigned to each node (for example, for two-way SMP nodes). To see the cluster nodes, enter the

command:

cat ~/mpd.hosts

The results should look as follows:

clusternode1

clusternode2

To equally distribute four processes of the application on two-way SMP clusters, enter the following

command:

mpirun –perhost 2 –n 4 ./myprog.exe

The output for the myprog.exe executable file may look as follows:

Hello world: rank 0 of 4 running on clusternode1

Hello world: rank 1 of 4 running on clusternode1

Hello world: rank 2 of 4 running on clusternode2

Hello world: rank 3 of 4 running on clusternode2

Alternatively, you can explicitly set the number of processes to be executed on each host through the use

of argument sets. One common use case is when employing the master-worker model in your application.

For example, the following command equally distributes the four processes on clusternode1 and on

clusternode2:

mpirun –n 2 –host clusternode1 ./myprog.exe : -n 2 -host clusternode2

./myprog.exe

See Also

You can get more details in the Local Options topic of the Intel® MPI Library Reference Manual for Linux*

OS.

You can get more information about controlling MPI process placement online at Controlling Process

Placement with the Intel® MPI Library.

https://software.intel.com/en-us/articles/controlling-process-placement-with-the-intel-mpi-library
https://software.intel.com/en-us/articles/controlling-process-placement-with-the-intel-mpi-library

24

8. Tuning with mpitune Utility
This section describes how to use the mpitune utility to find optimal settings for the Intel® MPI Library:

 Cluster-specific tuning

 Application-specific tuning

 Setting time limit

 Setting a fabrics list

 Setting a range for the number of processes

 Setting a limitation for hosts usage

 Restoring mpitune from the last saved session

 Tuning applications manually

8.1. Cluster-Specific Tuning
Intel® MPI Library has more than 100 parameters. The defaults are set for common usage and generally

provide good performance for most clusters and most applications. However, if you want to get even

higher performance, you can use the mpitune utility. This utility uses the Intel® MPI Benchmarks (IMB) as a

benchmark program running tests several times with different parameters and searching for the best ones.

Start the mpitune utility with the following command:

$ mpitune

Then, start your application with the -tune option to enable the tuned settings:

$ mpirun -tune -perhost 8 –n 64 ./your_app

For best results, run mpitune with write access permissions for <installdir>/<arch>/etc which is

the location for tuned parameters. If you do not have write access, a new configuration file will be saved in

your current directory.

By default, mpitune uses the Intel® MPI Benchmarks (IMB) as benchmark program. Alternatively, you can

substitute with your benchmark of choice by using the following command:

$ mpitune -test \”your_benchmark –param1 –param2\”

You can then apply the new settings as described in this topic.

The Intel® MPI Benchmarks executable files, which are more optimized for Intel microprocessors than for

non-Intel microprocessors, are used by default. This may result in different tuning settings on Intel

microprocessors than on non-Intel microprocessors.

8.2. Application-Specific Tuning
Use the mpitune utility to find optimal settings for your specific application.

$ mpitune --application \”your_app\” –-output-file yourapp.conf

Where “your_app” is the exact command line you use to start your application. For example:

“mpitune –-application \"./my_test\" –-output-file $PWD/my_test.conf

Tuned settings are saved in yourapp.conf file. To apply them, call mpirun as:

$ mpirun -tune $PWD/yourapp.conf -perhost 8 –n 64 ./your_app

“your_app” is not only executable file but any script which can be started as a separate process.

Intel® MPI Library User's Guide for Linux* OS

25

NOTE

The script should not change the I_MPI_* variables.

8.3. Setting Time Limit
The process of tuning can take a lot of time. Due to the varying factors involved in each cluster and

application setup, the tuning time can be unpredictable.

To restrict the tuning time, you can set the -time-limit option. For example, to limit the tuning to 8

hours (480 minutes), run the following command:

$ mpitune --time-limit 480

The time unit used is minutes.

8.4. Setting a Fabrics List
To define the fabrics to be tested, use the fabrics-list option.

$ mpitune --fabrics-list shm,ofa,dapl

The available fabrics are: shm:dapl, shm:tcp, shm, dapl, shm:ofa, shm:tmi, ofa, tmi, tcp.

8.5. Setting a Range for the Number of Processes
To limit the number of processes running on one node, you can use the perhost-range min:max

option. For example: the following command defines the number of MPI ranks on each node, between 4

and 8:

$ mpitune --perhost-range 4:8

8.6. Setting a Limitation for Hosts Usage
To limit the number of nodes on which tuning will be performed, use the --host-range min:max

option. For example, the following command will restrict running on 8 to 16 nodes only:

$ mpitune --host-range 8:16

8.7. Restoring mpitune from the Last Saved Session
Sometimes an unexpected event can occur during the mpitune. In this case, you can use the intermediate

saved in a mpituner_session_<session-id>.mts file. To restart mpitune from the last saved

session:

$ mpitune --session-file ./mpituner_session_<session-id>.mts

Where <session-id> is the Unix* timestamp of the moment tuner started.

8.8. Tuning Applications Manually
There is a family of I_MPI_ADJUST_* environment variables that allow you to manually tune the

collective operations of the Intel® MPI Library. By setting a range of message sizes and choosing different

algorithms, you can improve the performance of your application. For more information, see the

I_MPI_ADJUST Family topic in Intel® MPI Library Reference Manual for Linux* OS for details.

26

9. Job Schedulers Support
The Intel® MPI Library supports the majority of commonly used job schedulers in the HPC field.

The following job schedulers are supported on Linux* OS:

 Altair* PBS Pro*

 Torque*

 OpenPBS*

 IBM* Platform LSF*

 Parallelnavi* NQS*

 SLURM*

 Univa* Grid Engine*

On Linux* OS, this support is implemented in the mpirun wrapper script. mpirun determines the job

scheduler under which it was started by checking specific environment variables and then chooses the

appropriate method to start an application.

9.1. Altair* PBS Pro*, TORQUE*, and OpenPBS*
If you use one of these job schedulers, with the $PBS_ENVIRONMENT exists and the value is PBS_BATCH or

PBS_INTERACTIVE , mpirun uses $PBS_NODEFILE as a machine file for mpirun. You do not need to

specify the –machinefile option directly.

Example of a batch job script:

#PBS –l nodes=4:ppn=4

#PBS –q queue_name

cd $PBS_O_WORKDIR

mpirun –n 16 ./myprog.exe

9.2. IBM* Platform LSF*
If yo use the IBM* Platform LSF* job scheduler, and the $LSB_MCPU_HOSTS is set, it will be parsed to get

the list of hosts for the parallel job. $LSB_MCPU_HOSTS does not store the main process name; thus the

local hostname will be added to the top of the hosts list. Based on this hosts list, a machine file for mpirun

is generated with a unique name: /tmp/lsf_${username}.$$. The machine file is removed when the

job is completed.

Example:

$ bsub –n 16 mpirun –n 16 ./myprog.exe

9.3. Parallelnavi NQS*
If you use Parallelnavi NQS* job scheduler and the $ENVIRONMENT, $QSUB_REQID, $QSUB_NODEINF

options are set, the $QSUB_NODEINF file is used as a machine file for mpirun. Also –r plesh is used as

remote shell by the process manager during startup.

Intel® MPI Library User's Guide for Linux* OS

27

9.4. SLURM*
If the $SLURM_JOBID is set, the $SLURM_TASKS_PER_NODE, $SLURM_NODELIST environment variables

will be used to generate a machine file for mpirun. The name of the machine file is

/tmp/slurm_${username}.$$. The machine file will be removed when the job is completed.

Example:

$ srun -N2 --nodelist=host1,host2 –A

$ mpirun –n 2 myprog.exe

9.5. Univa* Grid Engine*
If you use the Univa* Grid Engine* job scheduler and the $PE_HOSTFILE is set, then two files will be

generated: /tmp/sge_hostfile_${username}_$$ and /tmp/sge_machifile_${username}_$$.

The latter is used as the machine file for mpirun. These files are removed when the job is completed.

9.6. SIGINT, SIGTERM Signals Intercepting
If resources allocated to a job exceed the limit, most job schedulers terminate the job by sending a signal

to all processes.

For example, Torque* sends SIGTERM three times to a job and if this job is still alive, SIGKILL will be sent

to terminate it.

For Univa* Grid Engine*, the default signal to terminate a job is SIGKILL. Intel® MPI Library is unable to

process or catch that signal causing mpirun to kill the entire job. You can change the value of the

termination signal through the following queue configuration:

 Use the following command to see available queues:

$ qconf –sql

 Execute the following command to modify the queue settings:

$ qconf -mq <queue_name>

 Find "terminate_method" and change signal to SIGTERM

 Save queue configuration

28

10. General Cluster Considerations
This topic discusses general considerations for clusters related to MPI usage:

 Defining which nodes to use

 Password-less ssh connection

 Heterogeneous system and jobs

10.1. Defining which Nodes to Use
By default, Intel® MPI Library looks for a file called mpd.hosts. This file should contain a list of all available

nodes on the cluster which can be used for your application. The format of the mpd.hosts file is a list of

node names, one name per line. Blank lines and the portions of any lines that follow a # character are

ignored.

You can specify the full path to this file by using the –f option.

When running under a supported job scheduler, using the –f option is unnecessary as the hosts will be

determined by the scheduler.

10.2. Password-less ssh Connection
When a process is started remotely, ssh is used to launch the processes by default. Without a password-

less SSH capability enabled, your password will be requested when launching jobs. A script is provided

with the Intel® MPI Library installation package that will automatically generat e and distribute SSH keys for

a user. The script is named sshconnectivity.exp and is located in the main folder after extracting the tarball.

If the script does not work for your system, the keys can be generated and distributed manually by

following these steps:

1. Generate a public key

local> ssh-keygen -t dsa -f .ssh/id_dsa

When you are prompted for a password, leave it blank by pressing the <enter> key

Two new files id_dsa and id_dsa.pub are created in the .ssh directory. The latter one is the

public key.

2. Distribute the public key to remote nodes

Go to the .ssh directory. Copy the public key to the remote machines.

local> cd .ssh

local> scp id_dsa.pub user@remote:~/.ssh/id_dsa.pub

Log into the remote machine and go to the .ssh directory on the remote side.

local> ssh user@remote

remote> cd .ssh

Add the client's public key to the known public keys on the remote server.

remote> cat id_dsa.pub >> authorized_keys

remote> chmod 640 authorized_keys

remote> rm id_dsa.pub

remote> exit

Intel® MPI Library User's Guide for Linux* OS

29

Next time you log into the remote server, you will not be prompted for a password.

NOTE

ssh setup depends on the ssh client distribution.

10.3. Heterogeneous Systems and Jobs
All clusters are not homogeneous. All jobs are not homogeneous. The Intel® MPI Library is able to run

multiple sets of commands and arguments in one command line through two different methods.

The easiest option for running multiple commands in two methods is by creating a configuration file and

defining the -configfile option. A configuration file contains a set of arguments to mpirun, one group

per line.

-n 1 –host node1 ./io <io_args>

-n 4 –host node2 ./compute <compute_args_1>

-n 4 –host node3 ./compute <compute_args_2>

Alternatively, a set of options can be passed on the command line by separating each group with ":" .

mpirun –n 1 –host node1 ./io <io_args> : -n 4 –host node2 ./compute

<compute_args_1> : -n 4 –host node3 ./compute <compute_args_2>

When a process is launched, the working directory will be set to the working directory of the machine

where the job was launched. To change this, use the -wdir <path>.

Use –env <var> <value> to set an environment variable to a value for only one process group. Using –

genv instead will apply the environment variable to all process groups. By default, all environment

variables are propagated from the environment at launch.

30

11. Troubleshooting
This section provides the following troubleshooting information:

 General Intel® MPI Library troubleshooting procedures

 Typical MPI failures with corresponding output messages and behavior when a failure occurs

 Recommendations on potential root causes and solutions

11.1. General Troubleshooting Procedures
When faced with errors or failures during usage of the Intel® MPI Library, take the following general

troubleshooting steps:

1. Check the System Requirements section and the Known Issues section in Intel® MPI Library Release

Notes.

2. Check accessibility of the hosts. Run a simple non-MPI application (for example, the hostname

utility) on the problem hosts using mpirun.

Example:

$ mpirun -ppn 1 -n 2 -hosts node01,node02 hostname

node01

node02

This may help reveal an environmental problem (such as, the MPI remote access tool is not

configured properly), or a connectivity problem (such as, unreachable hosts).

3. Run the MPI application with debug information enabled by setting the environment variable

I_MPI_DEBUG=6 and/or I_MPI_HYDRA_DEBUG=on. Increase the integer value of debug level to

get more detailed information. This action helps narrow down to the problematic component.

4. If you have the availability, download and install the latest version of Intel MPI Library from the

official product page and check if your problem persists.

5. If the problem still persists, you can submit a ticket via Intel® Premier Support.

11.2. Examples of MPI Failures
This section provides examples of typical MPI failures including descriptions, output messages, and related

recommendations. The following problems which may cause MPI failures are discussed in this section:

 Communication problems

 Environmental problems

 Other problems

11.2.1. Communication Problems
Communication problems with the Intel® MPI Library are usually caused by a signal termination (SIGTERM,

SIGKILL, or other signals). Such terminations may be due to a host reboot, receiving an unexpected

signal, out-of-memory (OOM) manager errors and others.

https://software.intel.com/en-us/intel-mpi-library
http://premier.intel.com/

Intel® MPI Library User's Guide for Linux* OS

31

To deal with such failures, you need to find out the reason for the MPI process termination (for example, by

checking the system log files).

Example 1

Symptom/Error Message

[50:node02] unexpected disconnect completion event from [41:node01]

and/or

==

= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES

= PID 20066 RUNNING AT node01

= EXIT CODE: 15

= CLEANING UP REMAINING PROCESSES

= YOU CAN IGNORE THE BELOW CLEANUP MESSAGES

==

The exact node and the MPI process reported in the table may not reflect the one where the initial failure

had occurred.

Cause

One of MPI processes is terminated by a signal (for example, SIGTERM or SIGKILL) on node01. The MPI

application was run over the dapl fabric.

Solution

Try to find out the reason of the MPI process termination. This may be a host reboot, receiving an

unexpected signal, OOM manager errors and others. Check the system log files.

Example 2

Symptom/Error Message

rank = 26, revents = 25, state = 8

Assertion failed in file ../../src/mpid/ch3/channels/nemesis/netmod/tcp/socksm.c

at line 2969: (it_plfd->revents & POLLERR) == 0

internal ABORT - process 25

Fatal error in PMPI_Alltoall: A process has failed, error stack:

PMPI_Alltoall(1062).......: MPI_Alltoall(sbuf=0x9dd7d0, scount=64, MPI_BYTE,

rbuf=0x9dc7b0, rcount=64, MPI_BYTE, comm=0x84000000) failed

MPIR_Alltoall_impl(860)...:

MPIR_Alltoall(819)........:

MPIR_Alltoall_intra(360)..:

dequeue_and_set_error(917): Communication error with rank 2rank = 45, revents =

25, state = 8

Assertion failed in file ../../src/mpid/ch3/channels/nemesis/netmod/tcp/socksm.c

at line 2969: (it_plfd->revents & POLLERR) == 0

internal ABORT - process 84

...

Fatal error in PMPI_Alltoall: A process has failed, error stack:

PMPI_Alltoall(1062).......: MPI_Alltoall(sbuf=MPI_IN_PLACE, scount=-1,

MPI_DATATYPE_NULL, rbuf=0x2ba2922b4010, rcount=8192, MPI_INT, MPI_COMM_WORLD)

failed

MPIR_Alltoall_impl(860)...:

MPIR_Alltoall(819)........:

MPIR_Alltoall_intra(265)..:

MPIC_Sendrecv_replace(658):

dequeue_and_set_error(917): Communication error with rank 84

...

and/or:

==

= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES

Troubleshooting

32

= PID 21686 RUNNING AT node01

= EXIT CODE: 15

= CLEANING UP REMAINING PROCESSES

= YOU CAN IGNORE THE BELOW CLEANUP MESSAGES

==

The exact node and the MPI process reported in the table may not reflect the one where the initial failure

had occurred.

Cause

One of MPI processes is terminated by a signal (for example, SIGTERM or SIGKILL) . The MPI application

was run over the tcp fabric. In such cases, hang of the MPI application is possible.

Solution

Try to find out the reason of the MPI process termination. This may be a host reboot, receiving an

unexpected signal, OOM manager errors and others. Check the system log files.

Example 3

Symptom/Error Message

[mpiexec@node00] control_cb (../../pm/pmiserv/pmiserv_cb.c:773): connection to

proxy 1 at host node01 failed

[mpiexec@node00] HYDT_dmxu_poll_wait_for_event

(../../tools/demux/demux_poll.c:76): callback returned error status

[mpiexec@node00] HYD_pmci_wait_for_completion

(../../pm/pmiserv/pmiserv_pmci.c:501): error waiting for event

[mpiexec@node00] main (../../ui/mpich/mpiexec.c:1063): process manager error

waiting for completion

Cause

The remote pmi_proxy process is terminated by the SIGKILL (9) signal on node01.

Solution

Try to find out the reason of the pmi_proxy process termination. This may be a host reboot, receiving an

unexpected signal, OOM manager errors and others. Check the system log files.

Example 4

Symptom/Error Message

Failed to connect to host node01 port 22: No route to host

Cause

One of the MPI compute nodes (node01) is not available on the network. In such cases, hang of the MPI

application is possible.

Solution

Check the network interfaces on the nodes and make sure the host is accessible.

Example 5

Symptom/Error Message

Failed to connect to host node01 port 22: Connection refused

Cause

The MPI remote node access mechanism is SSH. The SSH service is not running on node01.

Intel® MPI Library User's Guide for Linux* OS

33

Solution

Check the state of the SSH service on the nodes.

11.2.2. Environment Problems
Environmental errors may happen when there are problems with the system environment, such as

mandatory system services are not running, shared resources are unavailable and so on.

When you encounter environmental errors, check the environment. For example, verify the current state of

important services.

Example 1

Symptom/Error Message

librdmacm: Warning: couldn't read ABI version.

librdmacm: Warning: assuming: 4

librdmacm: Fatal: unable to get RDMA device list

or:

CMA: unable to get RDMA device list

librdmacm: couldn't read ABI version.

librdmacm: assuming: 4

Cause

The OFED* stack is not loaded. The application was run over the dapl fabric. In such cases, hang of the

MPI application is possible.

Solution

See the OFED* documentation for details about OFED* stack usage.

Example 2

Symptom/Error Message

[0] MPI startup(): Multi-threaded optimized library

[1] DAPL startup(): trying to open DAPL provider from I_MPI_DAPL_PROVIDER: ofa-

v2-mlx4_0-1

[0] DAPL startup(): trying to open DAPL provider from I_MPI_DAPL_PROVIDER: ofa-

v2-mlx4_0-1

[1] MPI startup(): DAPL provider ofa-v2-mlx4_0-1

[1] MPI startup(): dapl data transfer mode

[0] MPI startup(): DAPL provider ofa-v2-mlx4_0-1

[0] MPI startup(): dapl data transfer mode

In such cases, hang of the MPI application is possible.

Cause

The Subnet Manager (opensmd*) service is not running. The application was run over the dapl fabric. The

following output is provided when you set I_MPI_DEBUG=2.

Solution

Check the current status of the service. See the OFED* documentation for details on opensmd* usage.

Example 3

Symptom/Error Message

node01-mic0:MCM:2b66:e56a0b40: 2379 us(2379 us): scif_connect() to port 68,

failed with error Connection refused

node01-mic0:MCM:2b66:e56a0b40: 2494 us(115 us): open_hca: SCIF init ERR for

mlx4_0

Troubleshooting

34

Assertion failed in file

../../src/mpid/ch3/channels/nemesis/netmod/dapl/dapls_module_init.c

at line 761: 0

internal ABORT - process 0

Cause

The mpxyd daemon (CCL-proxy) is not running. The application was run over the dapl fabric. In such

cases, hang of the MPI application is possible.

Solution

Check the current status of the service. See the DAPL* documentation for details on mpxyd usage.

Example 4

Symptom/Error Message

node01-mic0:SCM:2b94:14227b40: 201 us(201 us): open_hca: ibv_get_device_list()

failed

node01-mic0:SCM:2b94:14227b40: 222 us(222 us): open_hca: ibv_get_device_list()

failed

node01-mic0:CMA:2b94:14227b40: 570 us(570 us): open_hca: getaddr_netdev ERROR:No

such device. Is ib0 configured?

...

Fatal error in MPI_Init: Other MPI error, error stack:

MPIR_Init_thread(784).................:

MPID_Init(1326).......................: channel initialization failed

MPIDI_CH3_Init(141)...................:

dapl_rc_setup_all_connections_20(1386): generic failure with errno = 872609295

getConnInfoKVS(849)...................: PMI_KVS_Get failed

Cause

The ofed-mic service is not running. The application was run over the dapl fabric. In such cases, hang of

the MPI application is possible.

Solution

Check the current status of the service. See the Intel® MPSS documentation for details on ofed-mic

usage.

Example 5

Symptom/Error Message

pmi_proxy: line 0: exec: pmi_proxy: not found

Cause

The Intel® MPI Library runtime scripts are not available. A possible reason is that the shared space cannot

be reached. In such cases, hang of the MPI application is possible.

Solution

Check if the shared path is available across all the nodes.

Example 6

Symptom/Error Message

[0] DAPL startup: RLIMIT_MEMLOCK too small

[0] MPI startup(): dapl fabric is not available and fallback fabric is not

enabled

or:

node01:SCM:1c66:3f226b40: 6815816 us: DAPL ERR reg_mr Cannot allocate memory

Intel® MPI Library User's Guide for Linux* OS

35

Cause

Wrong system limits: the max locked memory is too small. The application was run over the dapl fabric.

Solution

Check the system limits and update them if necessary. The following example shows the correct system

limits configuration:

$ ulimit -a

core file size (blocks, -c) 0

data seg size (kbytes, -d) unlimited

scheduling priority (-e) 0

file size (blocks, -f) unlimited

pending signals (-i) 256273

max locked memory (kbytes, -l) unlimited

max memory size (kbytes, -m) unlimited

open files (-n) 1024

pipe size (512 bytes, -p) 8

POSIX message queues (bytes, -q) 819200

real-time priority (-r) 0

stack size (kbytes, -s) unlimited

cpu time (seconds, -t) unlimited

max user processes (-u) 1024

virtual memory (kbytes, -v) unlimited

file locks (-x) unlimited

Example 7

Symptom/Error Message

Are you sure you want to continue connecting (yes/no)? The authenticity of host

'node01 (<node01_ip_address>)' can't be established.

This message may repeat continuously until manual interruption.

Cause

The MPI remote node access mechanism is SSH. SSH is not configured properly: unexpected messages

appear in the standard input (stdin).

Solution

Check the SSH connection to the problem node.

Example 8

Symptom/Error Message

Password:

Cause

The MPI remote node access mechanism is SSH. SSH is not password-less. In such cases, hang of the MPI

application is possible.

Solution

Check the SSH settings: password-less authorization by public keys should be enabled and configured.

11.2.3. Other Problems

Example 1

Symptom/Error Message

cannot execute binary file

Troubleshooting

36

Cause

Wrong binary executable file format or architecture.

This error occurs when you run a binary executable file build for x86_64 architecture on a k1om node (for

example, on an Intel® Xeon Phi™ coprocessor). In such cases, hang of the MPI application is possible .

Solution

Verify the correctness of the binary file and the command line options.

Example 2

Symptom/Error Message

node01.9234ipath_userinit: assign_context command failed: Invalid argument

node01.9234Driver initialization failure on /dev/ipath (err=23)

Cause

Intel® True Scale IBA resource exhaustion. The MPI application was run over the tmi fabric.

Depending on Intel® True Scale Fabric hardware, PSM* may not support CPU over-subscription of the

node. The maximum amount of processes which can be run on the node is limited and depends on a

combination of the particular Intel® True Scale Fabric hardware and the amount of CPU cores.

Solution

Limit the number of MPI processes per node.

37

12. Using the Intel® MPI Library with the
Intel® Many Integrated Core (Intel® MIC)
Architecture
Using the Intel® MPI Library in combination with an Intel® MIC Architecture card is similar to using another

node, but there are a few special considerations. This topic provides the information on these special

considerations.

12.1. Libraries
The Intel® MIC Architecture uses different binaries and libraries, and these must be present on the card. In

order to copy the appropriate files to the card, you can use the following commands:

(host)$ scp <installdir>/mic/bin/* host0-mic0:/bin/

(host)$ scp <installdir>/mic/lib/* host0-mic0:/lib64/

This assumes that the hostname of the card is host0-mic0. Any additional libraries needed by the

application can be copied in a similar manner.

12.2. Multiple Cards
To use multiple cards for a single job, the Intel® Manycore Platform Software Stack (Intel® MPSS) needs to

be configured for peer-to-peer support (see the Intel® MPSS documentation for details) and the host(s)

needs to have IP forwarding enabled.

(host)$ sudo sysctl -w net.ipv4.ip_forward=1

Each host/card should be able to ping every other host/card and the launching host should be able to

connect to every target, as with a classic cluster.

12.3. Using Intel® MPI Library on Intel® Xeon Phi™
Coprocessor
Intel® MPI Library for the Intel® Many Integrated Core Architecture (Intel® MIC Architecture) supports only

the Intel® Xeon Phi™ coprocessor (previously codenamed: Knights Corner).

12.3.1. Building an MPI Application
To build an MPI application for the host node and the Intel® Xeon Phi™ coprocessor, follow these steps:

1. Establish the environment settings for the compiler and for the Intel® MPI Library:

$. <install-dir>/compilers_and_libraries/linux/bin/compilervars.sh

intel64

$. <install-dir>/compilers_and_libraries/linux/mpi/intel64/bin/mpivars.sh

2. Build your application for Intel® Xeon Phi™ coprocessor:

$ mpiicc -mmic myprog.c -o myprog.mic

3. Build your application for Intel® 64 architecture:

$ mpiicc myprog.c -o myprog

Using the Intel® MPI Library with the Intel® Many Integrated Core (Intel® MIC) Architecture

38

12.3.2. Running an MPI Application
To run an MPI application on the host node and the Intel® Xeon Phi™ coprocessor, do the following:

1. Ensure that NFS is properly set up between the hosts and the Intel® Xeon Phi™ coprocessor(s). For

information on how to set up NFS on the Intel® Xeon Phi™ coprocessor(s), visit the Intel ® Xeon Phi™

coprocessor developer community at http://software.intel.com/en-us/mic-developer.

2. Use the I_MPI_MIC_POSTFIX environment variable to append the .mic postfix extension when

running on the Intel® Xeon Phi™ coprocessor.

$ export I_MPI_MIC_POSTFIX=.mic

3. Make sure your ~/mpi.hosts file contains the machine names of your Intel® Xeon® host

processors and the Intel® Xeon Phi™ coprocessor(s). For example:

$ cat ~/mpi.hosts

clusternode1

clusternode1-mic0

4. Launch the executable file from the host.

$ export I_MPI_MIC=on

$ mpirun -n 4 -hostfile ~/mpi.hosts ./myprog

NOTE

You can also use the -configfile and -machinefile options.

To run the application on Intel® Xeon Phi™ coprocessor only, follow the steps described above and ensure

that mpi.hosts contains only the Intel® Xeon Phi™ coprocessor name.

See Also

You can get more details in the Intel® Xeon Phi™ Coprocessor Support topic of the Intel® MPI Library

Reference Manual for Linux* OS.

You can get more information about using Intel® MPI Library on Intel® Xeon Ph i™ coprocessor online at

How to run Intel® Xeon Phi™ Coprocessor.

https://software.intel.com/en-us/articles/how-to-run-intel-mpi-on-xeon-phi

	Intel® MPI Library for Linux* OS User's Guide

	Legal Information
	1. Introduction
	1.1. Introducing Intel® MPI Library
	1.2. Intended Audience
	1.3. Conventions and Symbols
	1.4. Related Information

	2. Usage Model
	3. Installation and Licensing
	3.1. Installing Intel® MPI Library
	3.2. Licensing for Intel® MPI Library Runtime Environment and Software Development Kit

	4. Compiling and Linking
	4.1. Compiling an MPI Program
	4.2. Adding Debug Symbols
	4.3. Other Compilers Support

	5. Running Applications
	5.1. Running an MPI Program
	5.2. Intel® MPI Library Configurations
	5.3. Multi-threaded Applications
	5.4. Selecting Fabrics
	5.4.1. TCP Socket Connection
	5.4.2. Shared Memory
	5.4.3. Shared Memory and DAPL* Connection
	5.4.4. Shared memory and TMI*
	5.4.5. Shared memory and OFA*
	5.4.6. Shared memory and OFI*
	5.4.7. Multi-rail capability
	5.4.8. I_MPI_FABRICS
	Syntax
	Arguments

	6. Debugging and Testing
	6.1. GDB*: The GNU* Project Debugger
	6.2. TotalView* Debugger
	6.3. DDT* Debugger
	6.4. Logging
	6.4.1. Getting Debug Information
	6.4.2. Tracing an Application
	6.4.3. Checking Correctness
	6.4.4. Gathering Statistics

	6.5. Testing the Installation
	6.5.1. Compiling and Running a Test Program

	7. Process Management
	7.1. Selecting a Process Manager
	7.2. Scalable Process Management System (Hydra)
	7.3. Multipurpose Daemon* (MPD*)
	7.4. Controlling MPI Process Placement

	8. Tuning with mpitune Utility
	8.1. Cluster-Specific Tuning
	8.2. Application-Specific Tuning
	8.3. Setting Time Limit
	8.4. Setting a Fabrics List
	8.5. Setting a Range for the Number of Processes
	8.6. Setting a Limitation for Hosts Usage
	8.7. Restoring mpitune from the Last Saved Session
	8.8. Tuning Applications Manually

	9. Job Schedulers Support
	9.1. Altair* PBS Pro*, TORQUE*, and OpenPBS*
	9.2. IBM* Platform LSF*
	9.3. Parallelnavi NQS*
	9.4. SLURM*
	9.5. Univa* Grid Engine*
	9.6. SIGINT, SIGTERM Signals Intercepting

	10. General Cluster Considerations
	10.1. Defining which Nodes to Use
	10.2. Password-less ssh Connection
	10.3. Heterogeneous Systems and Jobs

	11. Troubleshooting
	11.1. General Troubleshooting Procedures
	11.2. Examples of MPI Failures
	11.2.1. Communication Problems
	Example 1
	Symptom/Error Message
	Cause
	Solution

	Example 2
	Symptom/Error Message
	Cause
	Solution

	Example 3
	Symptom/Error Message
	Cause
	Solution

	Example 4
	Symptom/Error Message
	Cause
	Solution

	Example 5
	Symptom/Error Message
	Cause
	Solution

	11.2.2. Environment Problems
	Example 1
	Symptom/Error Message
	Cause
	Solution

	Example 2
	Symptom/Error Message
	Cause
	Solution

	Example 3
	Symptom/Error Message
	Cause
	Solution

	Example 4
	Symptom/Error Message
	Cause
	Solution

	Example 5
	Symptom/Error Message
	Cause
	Solution

	Example 6
	Symptom/Error Message
	Cause
	Solution

	Example 7
	Symptom/Error Message
	Cause
	Solution

	Example 8
	Symptom/Error Message
	Cause
	Solution

	11.2.3. Other Problems
	Example 1
	Symptom/Error Message
	Cause
	Solution

	Example 2
	Symptom/Error Message
	Cause
	Solution

	12. Using the Intel® MPI Library with the Intel® Many Integrated Core (Intel® MIC) Architecture
	12.1. Libraries
	12.2. Multiple Cards
	12.3. Using Intel® MPI Library on Intel® Xeon Phi™ Coprocessor
	12.3.1. Building an MPI Application
	12.3.2. Running an MPI Application

