

Tutorial: MPI Tuner for Intel® MPI Library

Legal Information
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted
by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties
of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty
arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All
information provided here is subject to change without notice. Contact your Intel representative to
obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from
published specifications.

MPEG-1, MPEG-2, MPEG-4, H.261, H.263, H.264, MP3, DV, VC-1, MJPEG, AC3, AAC, G.711, G.722,
G.722.1, G.722.2, AMRWB, Extended AMRWB (AMRWB+), G.167, G.168, G.169, G.723.1, G.726,
G.728, G.729, G.729.1, GSM AMR, GSM FR are international standards promoted by ISO, IEC, ITU,
ETSI, 3GPP and other organizations. Implementations of these standards, or the standard enabled
platforms may require licenses from various entities, including Intel Corporation.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Intel, the Intel logo, BlueMoon, BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Cilk,
Core Inside, E-GOLD, Flexpipe, i960, Intel, the Intel logo, Intel AppUp, Intel Atom, Intel Atom Inside,
Intel Core, Intel Inside, Intel Insider, the Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the Intel Sponsors of
Tomorrow. logo, Intel StrataFlash, Intel vPro, Intel XScale, Intel True Scale Fabric, InTru, the InTru
logo, the InTru Inside logo, InTru soundmark, Itanium, Itanium Inside, MCS, MMX, MPSS, Moblin,
Pentium, Pentium Inside, Puma, skoool, the skoool logo, SMARTi, Sound Mark, Stay With It, The
Creators Project, The Journey Inside, Thunderbolt, Ultrabook, vPro Inside, VTune, Xeon, Xeon Phi,
Xeon Inside, X-GOLD, XMM, X-PMU and XPOSYS are trademarks of Intel Corporation in the U.S.
and/or other countries.

*Other names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Bluetooth is a trademark owned by its proprietor and used by Intel Corporation under license.

Intel Corporation uses the Palm OS* Ready mark under license from Palm, Inc.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

© 2015 Intel Corporation.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel

microprocessors for optimizations that are not unique to Intel microprocessors. These

optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.

Intel does not guarantee the availability, functionality, or effectiveness of any optimization

on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in

this product are intended for use with Intel microprocessors. Certain optimizations not

specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to

the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.

Notice revision #20110804

Overview

 Discover how to use the MPI Tuner for Intel® MPI Library to get

optimized configuration files for the runtime library automatically. You can also

get basic usage examples and troubleshooting tips from this tutorial.

About This
Tutorial

This tutorial demonstrates various methods to optimize the performance

of Intel® MPI Library for your own cluster and applications, including:

 Minimize the time spent tuning the cluster

 Include missed values in the default parameter grid during cluster

tuning

 Configure the optimal settings during application tuning

 Troubleshoot commonly seen issues when using the MPI tuner

Estimated
Duration

15-20 minutes.

Learning
Objectives

After you complete this tutorial, you should be able to:

 Use the MPI tuner to get optimal settings for the Intel® MPI Library
relevant to your cluster or your application configuration

 Troubleshoot common issues when using the MPI tuner

More
Resources

To get more information about the MPI Tuner for Intel® MPI

Library, see the following resources:

Product Web Site

Intel® MPI Library Support

Intel® Cluster Tools Products

Intel® Software Development Products

Prerequisites
Before using the MPI Tuner for Intel® MPI Library, ensure that the library, scripts,

and utility applications are installed. See the the Intel® MPI Library for Linux* OS

Installation Guide for installation instructions.

Navigation Quick Start
To use the MPI tuner:

1. Create optimized configuration files through the mpitune utility.

2. Use the configuration files through the –tune option of the mpirun command

during regular execution.

Note: Before you use the MPI tuner, you can check the tasks to be executed. Use the

--scheduler-only (-so) option to see the scope of mpitune work before the

real run: $ mpitune ... –so.

http://www.intel.com/go/mpi
http://www.intel.com/software/products/support/mpi
http://software.intel.com/en-us/articles/intel-cluster-studio-xe/
http://www.intel.com/software/products

MPI Tuner Access
To access the MPI Tuner: $ mpitune

Note: This command is not available from Intel® Xeon Phi™ Coprocessor natively but

can be launch from the host to tune MPI applications for any platforms

supported by Intel® MPI Library.

MPI Tuner Commands
The MPI tuner utility operates in four modes:

 Cluster-specific, evaluating a given cluster environment using either the

Intel® MPI Benchmarks or a user-provided benchmarking program to find

the most suitable configuration of the Intel® MPI Library. This mode is

used by default.

 Application-specific, evaluating the performance of a given MPI application

to find the best configuration for the Intel® MPI Library for the particular

application.

 Fast application-specific mode. In contrast to previous mode, this mode

performs micro-kernel tests based on Intel® MPI Library statistics instead

of real application launches. This approach is not so careful but can

speedup applications with non-typical patterns where non-optimal settings

have a chance to be chosen out of the box, such as rank placement,

including, process number per host or communicator, messages sizes, and

so on. The scope of tuning possibilities is relevant to regular collective

operations which have related environment variables in I_MPI_ADJUST

family, excluding KN_RADIX subset and I_MPI_ADJUST_REDUCE_SEGMENT. See

the Intel® MPI Library Reference Manual for details.

 Topology aware rank placement optimization mode, evaluating rank to

rank data transfers in the MPI application and the cluster characteristics to

find optimal rank placement. This approach has a reputation for

applications where communication pattern has some kind of local groups,

such as, stencils, collective operations on subsets of ranks, neighborhood

operations, and so on.

Cluster-Specific Tuning Commands
To use the MPI tuner under cluster-specific mode:

1. Run the following command to create the tuned configuration files in the

default <installdir>/<arch>/<etc> directory

 $ mpitune -hf <hostfile>

 or use the -odr option instead to create the tuned configuration files in a

result directory of your choice

 $ mpitune -hf <hostfile> -odr <path_to_result_directory>

2. Use the -tune option without an argument to pick up config files from the

default directory, or with the path to the results directly. For example:

 $ mpirun -tune -ppn 8 -n 128 ./my_app

 $ mpirun -tune <path_to_result_directory> -ppn 8 -n 128

 ./my_app

Application-Specific Tuning Commands
To use the MPI tuner under application-specific mode:

1. Use the --application (-a) option to tune the specified workload for the

provided environment and command line settings. The tuner will record

the new optimal settings in the myprog.conf file:

 $ mpitune --application \"mpirun -n 32 ./myprog\" -of

 ./myprog.conf

2. Use the –tune option to pick up the optimal recorded values for your

application at runtime.

 $ mpirun -tune ./myprog.conf -n 32 ./myprog

Task 1: Minimize Tuning Time in Cluster-Specific Mode
To reduce the cluster tuning time, think about which are the most common and

widely used MPI workloads on your cluster. Make a note about how they are

typically run in regards to:

 The range of the number of hosts used

 Numbers of ranks per host

 Fabric used(I_MPI_FABRICS)

 Common message sizes

 Most popular MPI functions

Host Range

For example, if the majority of workloads on the cluster use between 4 and 16 hosts, set

those lower and upper bounds through the -hr <n:m> option:

$ mpitune ... -hr 4:16

The mpitune utility will build all host ranges that are powers of 2 between 4 to 16.

Here, it’ll create tuned settings for 4 hosts, 8 hosts, and 16 hosts.

Numbers of Ranks per Host

Use the -pr <n:m> option to set the number of ranks per host:

$ mpitune ... -pr 1:16

Similarly, the mpitune utility will build a range of ranks that are powers of 2

between 1 and 16.For example, it will create tuned settings for all cases where

the number of ranks is 1, 2, 4, 8, 16.

$ mpitune ... -pr 24:24

If lower and upper bounds are the same, the mpitune utility will tune for the

ppn=24 case only.

Fabric Usage (I_MPI_FABRICS)

Use the -fl option to specify which fabric to use during tuning:

$ mpitune ... -fl shm:dapl,dapl,shm:ofa,ofa

The mpitune utility will run only the enumerated fabrics.

Message Sizes
Use the -mr option to set the range of message sizes to be tuned:

$ mpitune ... -mr 16:2097152

The mpitune utility will tune MPI operations with message sizes that are a power

of 2 between the specified bounds of 16 to 2097152 bytes.

Most Common MPI Functions
If you have statistics by usage and performance of MPI functions, you can adjust

the tuning scope with regard to your needs. You can find out compliance of

various tuning options with MPI functions in Intel® MPI Library User’s Guide

before start.

You can look at the most widely used MPI routines and go from simple to more

complex functions. For example, perform p2p tuning before the tuning of

collective operations.

Start with the p2p-sensitive options first:

1. Congregate the most common MPI functions under the option_set

variable:

$ export option_set=I_MPI_RDMA_TRANSLATION_CACHE\

 ,I_MPI_DAPL_RNDV_BUFFER_ALIGNMENT\

 ,I_MPI_SHM_FBOX_SIZE\

 ,I_MPI_SHM_CELL_SIZE\

 ,I_MPI_SSHM_BUFFER_SIZE\

 ,I_MPI_EAGER_THRESHOLD\

 ,I_MPI_DAPL_BUFFER_SIZE\

 ,I_MPI_INTRANODE_EAGER_THRESHOLD\

 ,I_MPI_DAPL_DIRECT_COPY_THRESHOLD

2. Run a tuning session on option_set. This will create a set of optimal Intel®

MPI Library cluster settings based only on the environment variables

provided above.

$ mpitune ... -os $option_set

3. Now tune the collectives:

$ mpitune ... --collective-only

Once complete, merge both configuration files into a single one and use it with

the -tune or -config runtime options.

Note: To further reduce the tuning time, you can specify the percentage improvement

needed or exclude those options which show acceptable performance.

Task 2: Include Missed Values in the Default

Parameters Grid during Cluster Tuning
The mpitune utility enumerates and only tunes values of most variables that are

powers of 2. If you know that your applications use atypical layouts or data sizes,

you can overwrite the mpitune defaults to run with a customized set.

Ensure you have write access to the <installdir>/<arch>/<etc> directory.

The mpitune utility uses *.xml files from <installdir>/<arch>/<etc> for self-

configuration. There are two main configuration files which describe what and

how tuning is implemented for the cluster specific mode: options.xml and

Benchmarks/imb.xml, respectively.

For example, if you would like to customize the tuning of the

I_MPI_EAGER_THRESHOLD variable, see the highlighted text below for appropriate

changes.

options.xml:

...

 <option name="I_MPI_EAGER_THRESHOLD" type="global"

group="collective" weight="1.0">

 <actions>

 <step order="1" storage="first">

 <additive>

 <env name="I_MPI_FALLBACK_DEVICE" type="global"

value="disable" />

 </additive>

 <range

name="range_vars">int_range(8192:524288:*:2)</range> <!-- explicit range

from 8k to 512k with power of 2 -->

 <format>@range_vars()</format>

 <result format="[msg_size]" limit="1" separator=""

/>

 </step>

 </actions>

 <requirements>

 <param name="hosts" value="2:2" /> <!—use 2 hosts -->

 <param name="perhost" value="1:1" /> <!-- with 1 process

on host -->

 <param name="processes" value="2:2" /> <!-- and 2

processes total -->

 <param name="devices" value="shm:dapl,shm:tmi" /> <!--

for shm:dapl and shm tmi fabrics (I_MPI_FABRICS) -->

 </requirements>

 <result <!-- internal format description -->

 format="#first#"

 quotes="no"

 quotesInline="no"

 />

 </option>

...

Benchmarks/imb.xml:

 <test title="IMB Sendrecv" weight="1.0">

 <description>Sendrecv test from IMB benchmark for OUTPUT

mode</description>

 <executable>"IMB-MPI1" -npmin %proc% -iter 5 -msglen

@msglen_file() Sendrecv</executable>

 <function

title="msglen_file">range_file(768:1536:+:256;"value[endl]")</function>

<!-- msg len file of IMB with range: 768, 1024, 1280 and 1536 bytes -->

 <launch_line>%mpiexec% %globals% %locals%

%executable%</launch_line>

 <requirements> <!-- values for requirements section are

calculated as intersection with the same block from options.xml file.

Results are in the mpitune schedule -->

 <param name="hosts" value="1:-1" />

 <param name="perhost" value="1:-1" />

 <param name="processes" value="2:-1" />

 <param name="devices"

value="rdssm,rdma,shm,ssm,sock,shm:dapl,shm:tcp,dapl,tcp,shm,shm:ofa,shm

:tmi,ofa,tmi" />

 </requirements>

 <options_filter filter="exclusive"> <!-- this section

enumerates options to tune by this benchmark-->

 <option type="global" name="I_MPI_EAGER_THRESHOLD" />

 <option type="global"

name="I_MPI_INTRANODE_EAGER_THRESHOLD" />

 </options_filter>

 <result <!-- format to parse benchmark output -->

 source="thtime"

 paramGroup="4"

 paramTitle="t[usec]"

 paramTarget="min"

 paramLeftMarginGroup="2"

 paramRightMarginGroup="3"

 paramChooseMode="heaviest"

 paramDiffDelta="0.001"

 msgGroup="0"

 msgTitle="Bytes"

 iterationCompare="min"

 startline=".*(\#bytes\s+\#repetitions).*"

dataline="\s+(\d+)\s+(\d+)\s+([\d\.]+)\s+([\d\.]+)\s+([\d\.]+)"

 solidatalines="1"

 />

 </test>

...

Task 3: Application-Specific Tuning
Now that you have completed the cluster-specific tuning, you can focus on how to

optimize the Intel® MPI Library for your application. You can use the above

cluster-specific methods and apply them to your application-specific tuning, with

the following modifications:

1. The layout of your application (such as hosts and process count per host)

is set on your mpirun command line, outside of mpitune.

2. Use your application instead of the micro benchmarks mentioned above.

3. Use the app.xml configuration file instead of imb.xml.

Fast Application-Specific Tuning Commands
To use the MPI tuner under fast application-specific mode:

1. Use the --fast (-f) option to switch in this mode, the --application (-a)

option to tune the specified workload for the provided environment and

command line settings or --stats(-s) to pass previously gathered

statistics. The tuner records the new optimal settings in the myprog.conf

file:

 $ mpitune –-fast --application \"mpirun -n 32 ./myprog\" -o

 ./myprog.conf

 Or

 $ mpitune –f -s ./stats.txt -o ./myprog.conf

Note: Use the --fast (-f) and --help(-h) options together to see other available

options for this mode.

2. Use the –tune option to pick up the optimal recorded values for your

application at runtime.

 $ mpirun -tune ./myprog.conf -n 32 ./myprog

Topology Awareness Rank Placement Optimization
Commands
To use the MPI tuner for rank placement optimization, you need a file with

enumerated hosts in the order as MPI ranks are distributed on your system. For

process number per host more than 1, dublicates are required. It can depend on

specific parameters of MPI process manager, cluster’s job scheduler or resource

manager. For example, for 4 hosts with 2 processes per host it usually looks like:

 $ cat hostfile.in

$ host1

$ host1

$ host2

$ host2

$ host3

$ host3

$ host4

$ host4

1. Use the --rank-placement (-rp), --hostfile-in (-hi) and --config-

out options. The tuner records the new optimal settings in the

myprog.conf file:

 $ mpitune --rank-placement --application \"mpirun -n 32 ./myprog\"

--hostfile-in hostfile.in --config-out ./myprog.conf

2. Use the –tune option to pick up the optimal recorded values for your

application at runtime.

 $ mpirun -tune ./myprog.conf -n 32 ./myprog

Or

1. Use the --rank-placement (-rp), --hostfile-in (-hi) and --hostfile-

out (-ho) options. The tuner records the optimized hostlist to

hostfile.out file:

 $ mpitune --rank-placement --application \"mpirun -n 32 ./myprog\"

--hostfile-out ./hostfile.out

2. Use the –machinefile option to pick up the optimal recorded values for

your application at runtime.

 $ mpirun -machinefile ./myprog.ho -n 32 ./myprog

Note: Use the --rank-placement (-rp) and --help(-h) options together to learn

other available options for this mode.

Also this feature is available right at runtime with –use-topology-app option of

hydra process manager. It may significantly increase startup time, but can be

more effective because cluster state (health, resource contentions, etc) at the

moment of startup is taken into account. See Intel® MPI Library Reference

Manual for details.

Troubleshooting
This topic explains how to troubleshoot common issues seen when running with

the MPI Tuner.

Issue Cause and Possible Solutions

The scheduler of mpitune is

empty.

1. Check the arguments for mpitune and ensure

they are not contradicting with each other. For

example --options-set and --options-exclude

should not overlap.

2. If no one fabric or device passes checking, try

run any MPI test applications on the same

configuration for details. The issue might be

caused by wrong hostfile or incorrect cluster

configuration.

The mpitune running time is
very long. 1. Check the projected schedule before the real

launch by using the –so option.

Use methods described in task1 and task 2 and/or their

combinations to skip unnecessary jobs

	Legal Information
	Overview
	Prerequisites
	Navigation Quick Start
	MPI Tuner Access
	MPI Tuner Commands
	Cluster-Specific Tuning Commands
	Application-Specific Tuning Commands

	Task 1: Minimize Tuning Time in Cluster-Specific Mode
	Host Range
	Numbers of Ranks per Host
	Fabric Usage (I_MPI_FABRICS)
	Message Sizes
	Most Common MPI Functions

	Task 2: Include Missed Values in the Default Parameters Grid during Cluster Tuning
	Task 3: Application-Specific Tuning
	Fast Application-Specific Tuning Commands
	Topology Awareness Rank Placement Optimization Commands

	Troubleshooting

